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We present a theorem that allows one to simplify the linear stability analysis of periodic and quasiperiodic
nonlinear regimes in N-particle mechanical systems with different kinds of discrete symmetry. This theorem
suggests a decomposition of the linearized system arising in the standard stability analysis into a number of
subsystems whose dimensions can be considerably less than the dimension of the full system. As an example
of such a simplification, we discuss the stability of bushes of modes �invariant manifolds� for the Fermi-Pasta-
Ulam chains and prove another theorem about the maximal dimension of the above-mentioned subsystems.
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I. INTRODUCTION

Different dynamical regimes in a mechanical system with
discrete-symmetry group G0 can be classified by subgroups
Gj �G0 of this group �1–3�. Actually, we can find an invari-
ant manifold corresponding to each subgroup Gj and decom-
pose it into the basis vectors of the irreducible representa-
tions of the group G0. As a result of this procedure, we obtain
a bush of modes �see the above-cited papers� which can be
considered as a certain physical object in a geometrical as
well as a dynamical sense. The mode structure of a given
bush is fully determined by its symmetry group Gj and is
independent of the specific type of interparticle interactions
in the system. In Hamiltonian systems, bushes of modes
represent dynamical objects in which the energy of the initial
excitation turns out to be “trapped” �this is a phenomenon
of energy localization in modal space�. The number of modes
belonging to a given bush �the bush dimension� does not
change in time, while amplitudes of the modes do change,
and we can find dynamical equations determining their
evolution.

Being an exact nonlinear excitation, in the considered me-
chanical system, each bush possesses its own domain of sta-
bility depending on the value of its mode amplitudes. Be-
yond the stability threshold a phenomenon similar to
parametric resonance occurs; the bush loses its stability and
transforms into another bush of higher dimension. This pro-
cess is accompanied by spontaneous lowering of the bush

symmetry: Gj→ G̃j, where G̃j �Gj.
The concept of bushes of modes was introduced in �1,2�,

and the detailed theory of these dynamical objects was de-
veloped in �3�. Low-dimensional bushes in mechanical sys-
tems with various kinds of symmetry and structures were
studied in �1–9�. The problem of bush stability was discussed
in �3,7–9�. The two last papers are devoted to the vibrational
bushes in Fermi-Pasta-Ulam �FPU� chains.

Note that dynamical objects equivalent to the bushes of
modes were recently discussed for monoatomic chains in pa-
pers by different authors �10–12,15�. Let us emphasize that
the group-theoretical methods developed in our papers �1–3�

can be applied efficiently not only to monoatomic chains �as
was illustrated in �8,9��, but to all other physical systems
with discrete symmetry groups �see �1–7��.

In this paper, we present a theorem which can simplify
essentially the stability analysis of the bushes of modes in
complex systems with many degrees of freedom. The useful-
ness of this theorem is illustrated with the example of non-
linear chains with a large number of particles. Note that the
simplification of the stability analysis in such systems actu-
ally originates from the well-known Wigner theorem about
the block diagonalization of the matrix commuting with all
matrices of a representation of a given symmetry group.

In Sec. II, we start with the simplest examples for intro-
ducing basic concepts and ideas. In Sec. III, we present a
general theorem about invariance of the dynamical equations
linearized near a given bush with respect to the bush sym-
metry group. In Sec. IV, we prove a theorem which turns out
to be very useful for splitting the above-mentioned linearized
dynamical equations for N-particle monoatomic chains.
Some additional examples of the simplification of the bush
stability analysis with the aid of group-theoretical methods
are presented in Sec. V. The main results of this paper are
discussed in the Conclusion �Sec. VI�.

II. SOME SIMPLE EXAMPLES

A. FPU chains and their symmetry

We consider longitudinal vibrations of N-particle chains
of identical masses �m=1� and identical springs connecting
neighboring particles. Let xi�t� be the displacement of the ith
particle �i=1,2 , . . . ,N� from its equilibrium position at a
given instance t. The dynamical equations of such a me-
chanical system �FPU chain� can be written as follows:

ẍi = f�xi+1 − xi� − f�xi − xi−1� . �1�

The nonlinear force f�x� depends on the deformation x of
the spring as f�x�=x+x2 and f�x�=x+x3 for FPU-� and
FPU-� chains, respectively. We assume the periodic bound-
ary conditions

x0�t� � xN�t�, xN+1�t� � x1�t� �2�

to be valid. Let us also introduce the “configuration vector”
X�t� which is the N-dimensional vector describing all the*Electronic address: chechin@phys.rsu.ru
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displacements of the individual particles at the moment t:

X�t� = �x1�t�,x2�t�, . . . ,xN�t�� . �3�

In the equilibrium state, a given chain is invariant under
the action of the operator â which shifts the chain by the
lattice spacing a. This operator generates the translational
group

TN = �ê, â, â2, . . . , âN−1�, âN = ê , �4�

where ê is the identity element and N is the order of the
cyclic group TN. The operator â induces the cyclic permuta-
tion of all particles of the chain and, therefore, it acts on the
“configuration vector” X�t� as follows:

âX�t� � â�x1�t�,x2�t�, . . . ,xN−1�t�,xN�t��

= �xN�t�,x1�t�,x2�t�, . . . ,xN−1�t�� .

The full symmetry group of the monoatomic chain con-

tains also the inversion î, with respect to the center of the
chain, which acts on the vector X�t� in the following manner:

îX�t� � î�x1�t�,x2�t�, . . . ,xN−1�t�,xN�t�� = �− xN�t�,

− xN−1�t�, . . . ,− x2�t�,− x1�t�� .

The complete set of all products âkî of the pure transla-

tions âk �k=0,1 ,2 , . . . ,N−1� with the inversion î forms the
so-called dihedral group DN which can be written as the di-

rect sum of two cosets TN and TN · î:

DN = TN � TN · î . �5�

The dihedral group is a non-Abelian group induced by two

generators �â and î� with the following generating relations

âN = ê, î2 = ê, îâ = â−1î . �6�

We will consider different vibrational regimes in the FPU
chains, which can be determined by the specific forms of the
configuration vector. Each of these regimes depends on m
independent parameters �m�N�, and this number is the di-
mension of the given regime.

The simplest case of one-dimensional vibrational regimes
represents the so-called � mode �zone boundary mode�:1

X�t� = �A�t�,− A�t��A�t�,− A�t��A�t�,− A�t�� . . . � , �7�

where A�t� is a certain function of t. In our terminology, this

is the one-dimensional bush B�â2 , î� �see below about nota-
tion of bushes of modes�.

The vector

X�t� = �0,A�t�,B�t�,0,− B�t�,− A�t�� . . . � �8�

represents a two-dimensional vibrational regime that is de-
termined by two time-dependent functions A�t� and B�t�.
This is the two-dimensional bush B�â6 , âî� �see �9��.

In general, for the m-dimensional vibrational regime, we
write X�t�=C�t�, where the N-dimensional vector C�t� de-
pends on m time-dependent functions only. Each specific dy-
namical regime C�t�, being an invariant manifold, possesses
its own symmetry group that is a subgroup of the parent
symmetry group G0=DN of the chain in equilibrium.

B. FPU-� chain with N=4 particles:

Existence of the bush B†â2 , î‡

Let us consider the above-discussed equations for the sim-
plest case N=4. The dynamical equations �1� read

ẍ1 = f�x2 − x1� − f�x1 − x4� ,

ẍ2 = f�x3 − x2� − f�x2 − x1� ,

ẍ3 = f�x4 − x3� − f�x3 − x2� ,

ẍ4 = f�x1 − x4� − f�x4 − x3� . �9�

The symmetry group G0 in the equilibrium state reads

G0 = D4 = �â, î� = �ê, â, â2, â3, î, âî, â2î, â3î� .

Hereafter, we write the generators of any symmetry group in
square brackets, while all its elements �if it is necessary� are
given in curly brackets.

The operators â and î act on the configuration vector
X= �x1 ,x2 ,x3 ,x4� as follows:

âX = �x4,x1,x2,x3�, îX = �− x4,− x3,− x2,− x1� .

Therefore, we can associate the following matrices M�â�
and M�î� of the mechanical representation2 with these
generators:

â Þ M�â� =	
0 0 0 1

1 0 0 0

0 1 0 0

0 0 1 0

 ,

î Þ M�î� =	
0 0 0 − 1

0 0 − 1 0

0 − 1 0 0

− 1 0 0 0

 . �10�

Their action on the configuration vector X is equivalent to

that of the operators â and î, respectively.
Let us now make the transformations of variables in the

system �9� according to the action of the matrices �10�—i.e.,

M�â�:x1 → x4, x2 → x1, x3 → x2, x4 → x3, �11�

1The dots in X�t� denote that the displacement fragment which is
given explicitly must be repeated several times to form the full
displacement pattern corresponding to the given bush.

2Here we consider only a special case: four-dimensional configu-

ration space and the concrete symmetry group G= �â , î�. The gen-
eral definition of the mechanical representation is given in the next
section.
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M�î�:x1 → − x4, x2 → − x3, x3 → − x2, x4 → − x1.

�12�

It is easy to check that both transformations �11� and �12�
produce systems of equations which are equivalent to the
system �9�. Moreover, these transformations act on the indi-
vidual equations uj �j=1,2 ,3 ,4� of the system �9� exactly as
on the components xj �j=1,2 ,3 ,4� of the configuration vec-

tor X. For example, for the operator î �or matrix M�î�� we
have

îu1 = − u4, îu2 = − u3, îu3 = − u2, îu4 = − u1.

It is obvious that a certain transposition of these equations
multiplied by ±1 will, indeed, produce a system fully iden-
tical to the original system �9�. Thus, we are convinced that
the symmetry group G0=D4 of our chain in equilibrium turns
out to be the symmetry group �the group of invariance� of the
dynamical equations of this mechanical system.

Let us now consider the vibrational regime �7�—i.e., �
mode—and check that it represents an invariant manifold for
the dynamical system �9�. Substituting x1�t�=x3�t�=A�t� and
x2�t�=x4�t�=−A�t� into Eqs. �9�, we reduce these equations
to one and the same equation of the form

Ä = f�− 2A� − f�2A� . �13�

In the case of the FPU-� model this equation turns out to be
the equation of harmonic oscillator �for the FPU-� model it
reduces to the Duffing equation�. Indeed, for the FPU-�
chain, we obtain, from Eq. �13�,

Ä + 4A = 0. �14�

Using, for simplicity, the initial condition A�0�=C0,

Ȧ�0�=0, we get the following solution to Eq. �14�:

A�t� = C0 cos�2t� . �15�

Thus, the one-dimensional bush B�â2 , î� �or � mode� �7� for
the FPU-� chain represents the purely harmonic dynamical
regime

X�t� = C0�cos�2t�,− cos�2t��cos�2t�,− cos�2t�� . �16�

On the other hand, the invariant manifold
X�t�= �A�t� ,−A�t� ,A�t� ,−A�t��, corresponding to the bush

B�â2 , î�, can be obtained with the aid of the group-theoretical
methods only, without consideration of the dynamical equa-
tions �9�. Let us discuss this point in more detail.

At an arbitrary instant t, the displacement pattern
�A�t� ,−A�t� ,A�t� ,−A�t�� possesses its own symmetry group
G=D2�G0=D4. Indeed, this pattern is conserved under in-

version �î� and under shifting all particles by 2a. The latter
procedure can be considered as a result of the action on the

chain by the operator â2. These two symmetry elements �â2

and î� determine the dihedral group D2 which is a subgroup
of order two of the original group G0=D4.3

It is obvious that the old element â of the group G0, de-
scribing the chain in equilibrium, does not survive in the
vibrational state described by the pattern �7�. Note that this
element �â� transforms the regime �7� into its equivalent �but
different� form �−A�t� ,A�t� ,−A�t� ,A�t��. In the present paper,
we will not discuss different equivalent forms of bushes of
modes �a detailed consideration of this problem can be found
in �9��. Thus, we encounter the reduction of symmetry
G0=D4→G=D2 when we pass from the equilibrium state to
the vibrational state �7� for the considered mechanical sys-
tem.

The dynamical regime �7� represents the one-dimensional
bush consisting of only one mode �� mode�. We will denote

it as B�G�=B�â2 , î� : �A ,−A ,A ,−A�. In square brackets, the
group of the bush symmetry is indicated by listing its gen-

erators �â2 and î, in our case�, while the characteristic frag-
ment of the bush displacement pattern is presented next to
the colon. The bush symmetry group G fully determines the
form �displacement pattern� of the bush B�G� �see, for ex-

ample, �3,9��. Indeed, in the case of the bush B�â2 , î�, it is
easy to show that this form X= �A�t� ,−A�t� ,A�t� ,−A�t�� can
be obtained as the general solution to the following linear
algebraic equation representing the invariance of the con-
figuration vector X : ĝ1X=X, ĝ2X=X, where ĝ1= â2 and

ĝ2= î are the generators of the group G. In our previous pa-
pers we often write these invariance conditions for the bush
B�G� in the form

ĜX = X . �17�

It is very essential that the invariant vector X�t�, which was
found in such geometrical �group-theoretical� manner, turns
out to be an invariant manifold for the considered dynamical
system �3�. Thus, we can obtain the symmetry-determined
invariant manifolds �bushes of modes� without any informa-
tion on interparticle interactions in the mechanical system.

C. FPU-� chain with N=4 particles:

Stability of the bush B†â2 , î‡

We now turn to the question of the stability of the

bush B�â2 , î�, representing a periodic vibrational regime
X= �A�t� ,−A�t� ,A�t� ,−A�t��, with A�t�=C0 cos�2t�. Accord-
ing to the conventional prescription, we must linearize the
dynamical system �9� in the infinitesimal vicinity of the given
bush and then study the obtained system. For this goal, let us
write

X�t� = C�t� + ��t� , �18�

where C= �A�t� ,−A�t� ,A�t� ,−A�t�� represents our bush,
while ��t�= ��1�t� ,�2�t� ,�3�t� ,�4�t�� is an infinitesimal vec-

3Let us recall that the order m of the subgroup G in the group G0

is determined by the equation m= �G0� / �G�, where �G0� and �G� are
numbers of elements in the groups G0 and G, respectively.
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tor. Substituting Eq. �18� into Eqs. �9� and neglecting all
terms nonlinear in � j�t�, we obtain the following linearized
equations for the FPU-� model:

�̈1 = ��2 − 2�1 + �4� − 4A�t���2 − �4� ,

�̈2 = ��3 − 2�2 + �1� + 4A�t���3 − �1� ,

�̈3 = ��4 − 2�3 + �2� − 4A�t���4 − �2� ,

�̈4 = ��1 − 2�4 + �3� + 4A�t���1 − �3� . �19�

The last system of equations can be written in the form

�̈ = J�t� · � , �20�

where J�t� is the Jacobi matrix for the system �9� calculated
by the substitution of the vector X= �A�t� ,−A�t� ,A�t� ,
−A�t��. This matrix can be presented as follows:

J�t� = L + 4A�t� · M, �21�

where

L =	
− 2 1 0 1

1 − 2 1 0

0 1 − 2 1

1 0 1 − 2

, M =	

0 − 1 0 1

− 1 0 1 0

0 1 0 − 1

1 0 − 1 0



�22�

are two time-independent symmetric matrices.
It easy to check that matrices L and M commute with each

other: L ·M=M·L. Therefore, there exists a time-
independent orthogonal matrix S that transforms the both

matrices L and M to the diagonal form: S̃ ·L ·S=Ldia,

S̃ ·M·S=Mdia �here S̃ is the transposed matrix with respect to
S�. In turn, it means that the Jacobi matrix J�t� can be diago-
nalized at any time t by one and the same time-independent
matrix S. Therefore, our linearized system �20� for the con-

sidered bush B�â2 , î� can be decomposed into four indepen-
dent differential equations.

Let us discuss how the above matrix S can be obtain with
the aid of the theory of irreducible representations of the
symmetry group G �in our case G=D2�.

In Sec. IV, we will consider a general method for obtain-
ing the matrix S which reduces the Jacobi matrix J�t� to a
block-diagonal form. This method uses the basis vectors of
irreducible representations of the group G, constructed in the
configuration space of the considered dynamical system. In
our simplest case of the monoatomic chain with N=4 par-
ticles, this method leads to the result

S =
1

2	
1 1 1 1

1 1 − 1 − 1

1 − 1 1 − 1

1 − 1 − 1 1

 . �23�

The rows of the matrix S from Eq. �23� are simply the char-
acters of four one-dimensional irreducible representations

�irreps�—�1, �2, �3, �4—of the Abelian group D2, because
each of these irreps is contained once in the decomposition
of the mechanical representation of the group G=D2.
Introducing new variables y= �y1 ,y2 ,y3 ,y4� instead of the
old variables �= ��1�t� ,�2�t� ,�3�t� ,�4�t�� by the equation
y=S·� with S from Eq. �23�, we arrive at the full splitting of
the linearized equations �19� for the FPU-� model:

ÿ1 = 0, �24a�

ÿ2 = − 2�1 + 4A�t��y2, �24b�

ÿ3 = − 4y3, �24c�

ÿ4 = − 2�1 − 4A�t��y4, �24d�

where A�t�=C0 cos�2t�.
With the aid of Eqs. �24�, we can find the stability thresh-

old in C0 for loss of stability of the one-dimensional bush

B�â2 , î�. Indeed, according to Eqs. �24�, the variables yj�t�
�j=1,2 ,3 ,4� are independent from each other, and we can
consider them in turn. Equation �24a� for y1�t� describes the
uniform motion of the center of masses of our chain, since it
follows from the equations y=S·� that y1�t���1�t�+�2�t�
+�3�t�+�4�t�. Therefore, considering vibrational regimes
only, we may assume y1�t��0.

If only y3�t� appears in the solution to the system �24�—
i.e., if y1�t�=0, y2�t�=0, y4�t�=0—then we have from, the

equation �=S̃ ·y �note that S is the orthogonal matrix and,

therefore, S−1=S̃�, ��t�= �y3�t� ,−y3�t� ,y3�t� ,−y3�t��, where
y3�t��cos�2t�. This solution leads only to deviations “along”
the bush X�t�=C0�cos�2t� ,−cos�2t� , cos�2t� ,−cos�2t�� and
does not signify instability.

Since A�t�=C0 cos�2t�, Eq. �24b� reads ÿ2+ �2
+8C0 cos�2t��y2=0 and can be transformed to the standard
form of the Mathieu equation, as well as Eq. �24d�. There-

fore, the stability threshold of the considered bush B�â2 , î�
for N=4 can be determined directly from the well-known
diagram of the regions of stable and unstable motion of the
Mathieu equation. In such a way we can find that critical
value Cc for the amplitude C0 of the given bush for which it
loses its stability is Cc
0.303.

In conclusion, let us focus on the point that turns out
to be very important for proving the general theorem in
Sec. III. The system �19� was obtained by linearizing the
original system �9�, near the dynamical regime C�t�= �A�t� ,
−A�t� ,A�t� ,−A�t��, and Eqs. �9� are invariant with respect

to the parent group G0= �â , î�. Despite this fact, Eqs. �19�
are invariant only with respect to its subgroup

G= �ê , â2 , î , â2î��G0= �ê , â , â2 , â3 , î , âî , â2î , â3î�: the element

â�G0 �as well as â3, âî, â3î� does not survive as a result of
the symmetry reduction G0→G. Indeed, acting on Eqs. �19�
by the operator ĝ= â, which transposes variables � j as

�1 → �4, �2 → �1, �3 → �2, �4 → �3, �25�

we obtain the equations
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�̈4 = ��1 − 2�4 + �3� − 4A�t���1 − �3� ,

�̈1 = ��2 − 2�1 + �4� + 4A�t���2 − �4� ,

�̈2 = ��3 − 2�2 + �1� − 4A�t���3 − �1� ,

�̈3 = ��4 − 2�3 + �2� + 4A�t���4 − �2� . �26�

Obviously, this system is not equivalent to the system �19�.
�The equivalence between Eqs. �19� and �26� can be restored,
if, besides the cyclic permutation �25� in Eqs. �19�, we add
the artificial transformation A�t�→−A�t��.

What is the source of this phenomenon? The original non-

linear dynamical system, which can be written as Ẍ=F�X�,
is invariant under the action of the operator ĝ= â. Being lin-
earized by the substitution X�t�=C�t�+��t� and neglecting
all the nonlinear in � j�t� terms, it becomes

�̈ = �� �F

�X
��

X=C
· � = J�C�t�� · � , �27�

where J�C�t�� is the Jacobi matrix. The latter system is also
invariant under the action of the operator ĝ= â, but its trans-
formation must be correctly written as follows:

�̈ = ĝ−1�� �F

�X
��

X=ĝC
· ĝ� = ĝ−1J�ĝC�t�� · ĝ� . �28�

In other words, we have to replace the vector X in the
Jacobi matrix by a transformed vector, ĝC, near which
the linearization is performed. Thus, we must write this
matrix in the form J�ĝC�t�� instead of J�C�t��. In our case,
ĝC�t�� âC�t�= �−A�t� ,A�t� ,−A�t� ,A�t�� and, therefore, we
indeed have to add the above-mentioned artificial transfor-
mation A�t�→−A�t�.

On the other hand, dealing with the linearized system

�̈=J�t� ·�, we conventionally consider the Jacobi matrix
J�C�t���J�t� as a fixed �but depending on t� matrix which
does not change when the operator ĝ= â acts on the system

�̈=J�t� ·�—this operator acts on the vector � only. The fact is

that we try to split the system �̈=J�t� ·� into some
subsystems using the traditional algebraic transformations
of the old variables � j. Indeed, we introduce new variables
�new=S·�, where S is a suitable time-independent
orthogonal matrix, and then obtain the new system

�̈new= �S̃ · J�t� ·S� ·�new that decomposes into a number of sub-
systems.

D. Stability of the bush B†â2 , î‡
for the FPU-� chain with N	4 particles

Linearizing the dynamical equations of the FPU-� chain

with N=6 in the vicinity of the bush B�â2 , î� �� mode�, we
obtain the following Jacobi matrix in Eq. �20�:

J�t� = L + 4A�t� · M,

where

L =	
− 2 1 0 0 0 1

1 − 2 1 0 0 0

0 1 − 2 1 0 0

0 0 1 − 2 1 0

0 0 0 1 − 2 1

1 0 0 0 1 − 2


 ,

M =	
0 − 1 0 0 0 1

− 1 0 1 0 0 0

0 1 0 − 1 0 0

0 0 − 1 0 1 0

0 0 0 1 0 − 1

1 0 0 0 − 1 0


 .

These two symmetric matrices, unlike the case N=4, do not
commute with each other: L ·M−M·L�0. As a conse-
quence, we cannot diagonalize both matrices L and M
simultaneously—i.e., with the aid of one and the same or-
thogonal matrix S. Therefore, it is impossible to diagonalize

the Jacobi matrix J�t� in the equation �̈=J�t� ·� for all time t.
In other words, there is no such matrix S that completely

splits the linearized system for the bush B�â2 , î� for the chain
with N=6 particles.

This difference between the cases N=4 and N=6 �gener-
ally, for N	4� can be explained as follows. The group

G= �â2 , î� of the considered bush, in fact, determines
different groups for the cases N=4 and N=6. Indeed, for

N=4 �â2 , î���Ê , â2 , î , â2î�=D2, while for N=6,

�â2 , î���Ê , â2 , â4 , î , â2î , â4î�=D3. The latter group �D3� is

non-Abelian �îâ4=a2î�, unlike the group D2 �îâ2=a2î�, and as
a consequence, it possesses not only one-dimensional irre-
ducible representations, but two-dimensional irreps, as well.
It will be shown in Sec. IV that precisely this fact does not
permit us to split fully the above-discussed linearized
system.4

In spite of this difficulty, we can simplify the linearized

system �̈=J�t� ·� considerably with the aid of some group-
theoretical methods, which are discussed in the two follow-
ing sections. Now, we only would like to present the final
result of the above splitting for the case N=6:

ÿ1 = − 4y1, �29a�

ÿ2 = 0, �29b�

ÿ3 + 2y3 = P�t�y5,

ÿ5 + 2y5 = P̄�t�y3, �29c�

ÿ4 + 2y4 = P�t�y6,

ÿ6 + 2y6 = P̄�t�y4. �29d�

4Actually, this fact can be understood if one takes into account
that the two-dimensional irrep contains two times in the decompo-
sition of the mechanical representation of the considered chain.
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Here P�t�=ei�/3−4A�t��1+e−i�/3�, while P̄�t� is the complex
conjugate function with respect to P�t�. The two-dimensional
subsystems �29c� and �29d� can be reduced to the real form
by a certain linear transformation.

Note that the stability of the � mode �the bush B�â2 , î��
was discussed in a number of papers �8–10,12–15,18–20� by
different methods and with an emphasis on different aspects
of this stability. In particular, in our paper �8�, a remarkable
fact was revealed for the FPU-� chain: the stability threshold
of the � mode is one and the same for interactions with all
the other modes of the chain. �For other one-dimensional
nonlinear modes, for both the FPU-� and FPU-� chains, the
stability thresholds, determined by interactions with different
modes, are essentially different �9�.�

III. GENERAL THEOREM AND ITS CONSEQUENCES

A. Theorem about symmetry groups
of linearized systems

We consider an N-degrees-of-freedom mechanical system
described by N autonomous differential equations

Ẍ = F�X� , �30�

where the configuration vector X= �x1�t� ,x2�t� , . . . ,xN�t��
determines the deviation from the equilibrium
state X= �0,0 , . . . ,0�, while vector function
F�X�= �f1�X� , f2�X� , . . . , fN�X�� determines the right-hand
sides of the dynamical equations.

We assume that Eq. �30� is invariant under the action of a
discrete symmetry group G0 which we call the “parent sym-
metry group” of our mechanical system. This means that, for
all g�G0 Eq. �30� is invariant under the transformation of
variables

X̃ = ĝX , �31�

where ĝ is the operator associated with the symmetry ele-
ment g of the group G0 by the conventional definition

ĝX = �g−1x1�t�, . . . ,g−1xN�t�� .

Using Eqs. �30� and �31�, one can write X= ĝ−1X̃,

ĝ−1X̃
¨

=F�ĝ−1X̃�, and finally

X̃
¨

= ĝF�ĝ−1X̃� . �32�

On the other hand, renaming X from Eq. �30� as X̃, one can

write X̃
¨

=F�X̃�. Comparing this equation with Eq. �32�, we

obtain F�X̃�= ĝF�ĝ−1X̃� or

F�ĝX� = ĝF�X� . �33�

This is the condition of invariance of the dynamical equa-
tions �30� under the action of the operator ĝ. It must hold for
all g�G0 �obviously, it is sufficient to consider such equiva-
lence only for the generators of the group G0�.

Let X�t�=C�t� be an m-dimensional specific dynamical
regime in the considered mechanical system that corresponds

to the bush B�G� �G�G0�. This means that there exist some
functional relations between the individual displacements
xi�t� �i=1,2 , . . . ,N�, and, as a result, the system �30� reduces
to m ordinary differential equations in terms of the indepen-
dent functions �we denoted them by A�t�, B�t�, C�t�, etc., in
the previous section; see, for example, Eqs. �7� and �8��.

The vector C�t� is a general solution to the equation �see
Eq. �17��

ĜX = X ,

where G is the symmetry group of the given bush B�G�
�G�G0�.

Now, we want to study the stability of the dynamical re-
gime C�t�, corresponding to the bush B�G�. To this end, we
must linearize the dynamical equations �30� in a vicinity of
the given bush or more precisely, in a vicinity of the vector
C�t�. Let

X = C�t� + ��t� , �34�

where ��t�= ��1�t� , . . . ,�N�t�� is an infinitesimal
N-dimensional vector. Substituting X�t� from Eq. �34� into
Eq. �30� and linearizing these equations with respect to ��t�,
we obtain

�̈ = J�C�t�� · � , �35�

where J�C�t�� is the Jacobi matrix of the system �30�:

J�C�t�� = �� �f i

�xj
�

X=C�t�
� .

Now, we intend to prove the following
Theorem 1. The matrix J�C�t�� of the linearized dynamical

equations near a given bush B�G�, determined by the con-
figuration vector C�t�, commutes with all matrices M�g� �g
�G� of the mechanical representation of the symmetry
group G of the considered bush:

M�g� · J�C�t�� = J�C�t�� · M�g� .

Proof. As was already discussed in Sec. II, the original

nonlinear system Ẍ=F�X� transforms into the system

Ẍ= ĝ−1F�ĝX� under the action of the operator ĝ associated
with the symmetry element g�G0 of the parent group G0.
According to Eq. �33�, the invariance of our system with
respect to the operator ĝ can be written as follows:

ĝ−1F�ĝX� = F�X� . �36�

On the other hand, the system Ẍ=F�X�, linearized in the

vicinity of the vector X=C�t�, reads �̈=J�C�t�� ·� �see Eq.
�35��. Under the action of the operator ĝ, it transforms, ac-
cording to Eq. �28�, into the system

�̈ = ĝ−1J�ĝC�t�� · ĝ� . �37�

Let us now consider the mechanical representation � of
the parent symmetry group G0. To this end, we chose the
“natural” basis �= �e1 ,e2 , . . . ,eN� in the space of all possible
displacements of individual particles �configuration space�:
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e1 =	
1

0

0

]

0

 , e2 =	

0

1

0

]

0

 , . . . ,eN =	

0

0

0

]

1

 . �38�

Acting by an operator ĝ �g�G� on the vector e j, we can
write

ĝe j = �
i=1

N

Mij�g� · ei, j = 1,2,¼,N . �39�

This equation associates the matrix M�g���Mij� with the
operator ĝ and, therefore, with the symmetry element g�G:

g Þ ĝ Þ M�g� . �40�

The set of matrices M�g� corresponding to all g�G forms
the mechanical representation � for our system.5 As a con-
sequence of this definition, the equation

ĝC = M�g� · C �41�

is valid for any vector C determined in the basis �38� as
C=�k=1

N Ckek.
Using Eq. �41�, we can rewrite Eq. �37� in terms of ma-

trices M�g��Mg �g�G0� of the mechanical representation
of the group G0:

�̈ = Mg
−1 · J�MgC�t�� · Mg� . �42�

Comparing this equation with Eq. �35�, we conclude that the

invariance of the system �̈=J�C�t�� ·� with respect of the
operator ĝ �matrix Mg� can be written as the relation

Mg
−1 · J�MgC�t�� · Mg = J�C�t�� . �43�

Now, let us suppose that g is an element of the symmetry
group G of a given bush B�G� �G�G0�. By the definition,
all the elements of this group �g�G� leave invariant the
vector C�t� that determines the displacement pattern of this
bush:

ĝC�t� = Mg · C�t� = C�t�, g � G . �44�

Taking into account this equation, we obtain from Eq. �43�
the relation

Mg
−1 · J�C�t�� · Mg = J�C�t�� , �45�

which holds for each element g of the symmetry group G of
the considered bush.

Rewriting Eq. �45� in the form

J�C�t�� · Mg = Mg · J�C�t�� , �46�

we arrive at the conclusion of our theorem: all the matrices
Mg of the mechanical representation of the group G commute
with the Jacobi matrix J�C�t�� of the linearized �near the

given bush� dynamical equations �̈=J�C�t�� ·�. �

In what follows, we will introduce a simpler notation for
the Jacobi matrix:

J�C�t�� � J�t� . �47�

Remark. We have proved that all the matrices Mg with
g�G commute with the Jacobi matrix J�t� of the system
�35�. But if we take a symmetry element g�G0 that is not
contained in G �g�G0 \G�, the matrix Mg corresponding to
g may not commute with J�t�. An example of such noncom-
mutativity and the source of this phenomenon were pre-
sented in Sec. II C.

B. Application of the Wigner theorem

Taking into account theorem 1, we can apply the well-
known Wigner theorem �see, for example, �17�� to split the

linearized system �̈=J�t� ·� into a certain number of inde-
pendent subsystems. We will formulate this theorem in a
form convenient for our present purposes.

Let us have a reducible representation � of the group G
which can be decomposed into a direct sum of the irreduc-
ible representations � j of this group:

� = �
j

�mj� j . �48�

Here mj is the number of times that � j enters into this de-
composition. We denote the dimension of the irrep � j by nj.
Then the Wigner theorem asserts the following.

Any matrix H commuting with all the matrices of a rep-
resentation � of the group G can be reduced to the block-
diagonal form

H = ��
D j �49�

such that �1� the dimension of the each block D j is equal to
mj ·nj and �2� the block D j consists of subblocks representing
matrices proportional to the identity matrix In of dimension
nj which are repeated mj times along the rows and columns
of the block D j.

We can illustrate the structure of a certain block D j =D
characterized by the numbers nj =n, mj =m as follows:

D =	

11In 
12In . . . 
1mIn


21In 
22In . . . 
2mIn

. . . . . . . . . . . .


m1In 
m2In . . . 
mmIn


 , �50�

Now, let us adapt the Wigner theorem for splitting the

linearized system �̈=J�t� ·� near the dynamical regime �a
bush of modes� with symmetry group G. To this end, we
assume for H and �, occurring in the Wigner theorem, that H
is the Jacobi matrix J�t�, while � is the mechanical represen-
tation of the group G.

5According to the traditional definition of the n-dimen-
sional matrix representation of the group G, a matrix M�g� is

associated with the element g�G, if ĝ�=M̃�g��. Here
�= ��1�r� ,�2�r� , . . . ,�N�r�� is the set of basis vectors, ĝ is the

operator acting on the vectors as ĝ�i�r�=�i�g−1r�, and M̃�g� is the
matrix transposed with respect to the matrix M�g�.
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To implement this splitting explicitly one must pass from
the old basis �old= �e1 ,e2 , . . . ,eN , � of the mechanical space
to the new basis �new= ��1 ,�2 , . . . ,�N , � formed by the com-
plete set of the basis vectors �k �k=1,2 , . . . ,N� of all the
irreps of the group G. If �new=S·�old, then the unitary
transformation6

Jnew�t� = S† · Jold�t� · S �51�

produces the above-discussed block-diagonal matrix

Jnew�t� of the linearized system �̈new=Jnew�t� ·�new �here
�old=S·�new�.

In the next section, we will search the basis vectors
�i�� j� �i=1,2 , . . . ,nj� of each irreducible representation � j

in the form

�i�� j� = �xij
�1�,xij

�2�, . . . ,xij
�N�� , �52�

where xij
�k�, �k=1,2 , . . . ,N� determines the displacement of

the kth particle corresponding to the ith basis vector �i�� j� of
the jth irrep � j. Actually, this means that we search �i�� j� as
a superposition of the old basis vectors ek �k=1,2 , . . . ,N� of
the mechanical space �see Eq. �38��:

�i�� j� = �
k=1

N

xij
�k� · ek. �53�

If we find all the basis vectors �i�� j� in such a form, the
coefficients xij

�k� are obviously the elements of the matrix S
that determines the transformation �new=S·�old from the
old basis �old= �ek �k=1,2 , . . . ,N� to the new basis
�new= ��i�� j� � i=1,2 , . . . ,nj ; j=1,2 , . . . �. Here j=1,2 , . . .
are indices of the irreducible representations that contribute
to the reducible mechanical representation �.

Thus, finding all the basis vectors �i�� j� of the irreps � j

in the form �52� provides us directly with the matrix S that
decomposes the Jacobi matrix J�t� of the linearized system

�̈=J�t� ·�.

C. Splitting schemes

The above-discussed implicit decomposition of the Jacobi
matrix J�t� is a cumbersome procedure and, therefore, it is
interesting to know beforehand to what extent this decompo-
sition will be useful. This can be easily determined by means
of the theory of characters of group representations. Let us
consider such an approach in more detail.

We want to determine the splitting scheme of the linear-

ized system �̈=J�t� ·�; namely, we want to find out how
many subsystems of different dimensions one can obtain as a
result of the decomposition of the Jacobi matrix.

Each block D j from the decomposition �49� of the matrix
H�J�t� generates an independent subsystem with nj ·mj

equations in the decomposition of the linearized system.
However, each of these subsystems automatically splits into
nj new subsystems consisting of mj differential equations, as

a consequence of the specific structure of the block D j �see
Eq. �50��. Indeed, for example, if a certain D block for the
matrix J�t� possesses the form �nj =3, mj =2�

J j�t� = �
11I3 
12I3


21I3 
22I3
� ,

it is easy to check that we obtain the following three inde-

pendent pairs of the equations from the system �̈=J�t� ·�:

��̈1 = 
11�1 + 
12�4,

�̈4 = 
21�1 + 
22�4,
���̈2 = 
11�2 + 
12�5,

�̈5 = 
21�2 + 
22�5,
�

��̈3 = 
11�3 + 
12�6,

�̈6 = 
21�3 + 
22�6.
� �54�

We see that the dimension of each subsystem �54� is equal to
mj =2, while the total number of these subsystems is equal to
nj =3. Moreover, these subsystems can be written in the form

�̈=M·� with one and the same matrix

M = �
11 
12


21 
22
� .

Thus, to obtain the splitting scheme of the linearized sys-

tem �̈=J�t� ·�, for each irrep � j of the bush symmetry group
G, we must find two numbers—nj �the dimension of � j� and
mj �the multiplicity number from Eq. �48��.

The multiplicity numbers mj can be found by means of
the well-known formula from the theory of the group repre-
sentations �17�:

mj =
1

�G� �
g�G

���g��̄ j�g� . �55�

Here �G� is the number of elements of the group G, ���g�
and � j�g� are the traces of the matrices associated with the
group element g�G in the reducible representation � �me-
chanical representation, in our case� and in the irreducible
representation � j, respectively �the bar over � j�g� denotes
complex conjugation�.

On the other hand, � j�g� can be obtained from the stan-
dard tables of characters of the irreducible representations for
many groups of discrete symmetry �in particular, for all the
point symmetry groups�, while ���g� can be obtained with-
out the explicit construction of the matrices of the mechani-
cal representation �.

The method for obtaining ���g� is discussed in many text-
books �see, for example, �21�� in connection with studying
the small vibrations of multiatomic molecules. The main
point of the method is that, for a fixed g�G, only those
atoms whose positions do not change under the action of g
on the considered molecule contribute to ���g�. Moreover,
this contribution is determined by the trace of the three-
dimensional matrix associated with the symmetry element
g. For example, the contribution to ���g� from any atom
invariant under the action of a rotation by an angle �
is 1+2 cos���, while that for a mirror rotation is
−1+2 cos���.

6Here S† is the Hermite conjugated matrix with respect to the
matrix S.
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The above method for finding the multiplicity numbers mj
is very quick and simple. We apply it in Sec. V in connection
with the simplification of the stability analysis of some non-
linear dynamical regimes in an octahedral molecule with
symmetry group G=Oh.

IV. STABILITY ANALYSIS OF DYNAMICAL
REGIMES IN MONOATOMIC CHAINS

A. Setting up the problem and theorem 2

In general, the study of the stability of periodic and, es-
pecially, quasiperiodic dynamical regimes in mechanical sys-
tems with many degrees of freedom presents considerable
difficulties. Indeed, for this purpose, we must integrate a
large linearized �near the considered regime� system of dif-
ferential equations with time-dependent coefficients. In the
case of the periodic regime, one can use the Floquet method
requiring integration over only one time period to construct
the monodromy matrix. But for the quasiperiodic regime this
method is inapplicable, and one often needs to solve a sys-
tem of a great number of differential equations for very large
time intervals to reveal instability �especially, near the stabil-
ity threshold�.

In such a situation, a decomposition �splitting� of the full
linearized system into a number of independent subsystems
of small dimensions proves to be very useful. Moreover, this
decomposition can provide valuable information on the gen-
eralized degrees of freedom responsible for the loss of sta-
bility of the given dynamical regime for the first time. Let us
note that the number of such “critical” degrees of freedom
can frequently be rather small.

We want to illustrate the above idea with the case of
N-particle monoatomic chains for N
1. Let us introduce the
following notation. The bush B�G� with the symmetry group
G containing the translational subgroup �âm� will be denoted
by B�âm , . . . �, where the ellipsis stands for other generators
of the group G. �Note that any m-dimensional bush can exist
only for the chain with N divisible by m.�

Theorem 2. Linear stability analysis of any bush
B�âm , . . . � in the N-degrees-of-freedom monoatomic chain
can be reduced to stability analysis of isolated subsystems of
the second-order differential equations with time-dependent
coefficients whose dimensions do not exceed the integer
number m.

Corollary. If the bush dimension is d, one can pass on to
subsystems of autonomous differential equations with di-
mensions not exceeding �m+d�.

Before proving these propositions we must consider the
procedure of constructing the basis vectors of the irreducible
representations of the translational group T.

B. Basis vectors of irreducible representations
of the translational groups

The basis vectors of irreducible representations of differ-
ent symmetry groups are usually obtained by the method of
projection operators �17�, but in our case, it is easier to make

use of the “direct” method based on the definition of the
group representation.7

Let � be an n-dimensional representation �reducible or
irreducible� of the group G, while V��� be the invariant sub-
space corresponding to the representation determined by the
set � of N-dimensional basis vectors � j �j=1, . . . ,n�:

� = ��1,�2, . . . ,�n� . �56�

Acting on any basis vector � j by an operator ĝ �g�G�
and bearing in mind the invariance of the subspace V���, we
can represent the vector ĝ� j as a superposition of all basis
vectors from Eq. �56�. In other words,

ĝ� � �ĝ�1, ĝ�2, . . . , ĝ�n� = M̃�g�� , �57�

where M�g� is the matrix corresponding, in the representa-
tion �, to the element g of the group G. �In Eq. �57�, we use
a tilde as the symbol of matrix transposition.� Equation �57�
associates with any g�G a certain n�n matrix M�g� and
encapsulates the definition of matrix representation

� = �M�g1�,M�g2�, . . . � . �58�

The above-mentioned “direct” method is based precisely
on this definition. Let us use it to obtain the basis vectors of
the irreducible representations for the translational group
T��âm�. We will construct these vectors in the configuration
space of the N-particle monoatomic chain and, therefore,
each vector � j can be written as follows:

� j = �x1,x2, . . . ,xN� , �59�

where xi is a displacement of the ith particle from its equi-
librium.

The group T��âm� represents a translational subgroup
corresponding to the bush B�G�=B�âm , . . . �. For an
N-particle chain,8 T��âm� is a subgroup of the order
k=N /m of the full translational group TN��â�, and we can
write the complete set of its elements as follows:

Tk = �ê, âm, â2m, â3m, . . . , â�k−1�m� �âkm = âN = ê� . �60�

Being cyclic, the group Tk from Eq. �60� possesses only
one-dimensional irreps and their total number is equal to the
order �k=N /m� of this group.

Below, for simplicity, we consider the case m=3 and
N=12. The generalization to the case of arbitrary values of m
and N turns out to be trivial.

As is well known, the one-dimensional irreps �i of the
kth order cyclic group can be constructed with the aid of the
kth degree roots of 1 and, therefore, for our case N=12,
m=3, k=4, we obtain the irreducible representations listed in
Table I.

In accordance with the definition �57�, the basis vector �
of the one-dimensional irrep �, for which M�g�=�, must
satisfy the equation

7We already use this method in our previous papers �see, for ex-
ample, �8��.

8Note that the relation N mod m=0 must hold.

STABILITY ANALYSIS OF DYNAMICAL REGIMES IN¼ PHYSICAL REVIEW E 73, 036216 �2006�

036216-9



ĝ� = �� . �61�

In our case, ĝ= â3, this equation can be written as follows:

ĝ� � �x10,x11,x12�x1,x2,x3�x4,x5,x6�x7,x8,x9�

= ��x1,x2,x3�x4,x5,x6�x7,x8,x9�x10,x11,x12� . �62�

Here �=1, i, −1, and −i for the irreps �1, �2, �3, and �4,
respectively. Equating the sequential components of both
sides of Eq. �62�, we obtain the general solution to the equa-
tion ĝ�=��, which turns out to depend on three arbitrary
constants—say, x, y, and z:

� = �x,y,z��−1x,�−1y,�−1z��−2x,�−2y,�−2z��−3x,�−3y,�−3z�

= x�1,0,0��−1,0,0��−2,0,0��−3,0,0�

+ y�0,1,0�0,�−1,0�0,�−2,0�0,�−3,0�

+ z�0,0,1�0,0,�−1�0,0,�−2�0,0,�−3� . �63�

Here we write the vector � as the superposition �with coef-
ficients x, y, z� of three basis vectors. It means that the irrep
� is contained thrice in the decomposition of the mechanical
representation into irreducible representations of the group
G= �â3�.

This result can be generalized to the case of arbitrary N
and m in a trivial manner: each irrep of the group G= �âm�
enters exactly m times into the decomposition of the me-
chanical representation for an N-particle chain, and the rule
for constructing m appropriate basis vectors is fully obvious
from Eq. �63�.

C. Decomposition of the Jacobi matrix

The basis vectors of all irreps �i, listed for the case
N=12, m=3 in Table I, can be obtained from Eq. �63� setting
�=1, i, −1, −i, respectively �these values are one-
dimensional matrices corresponding in �i �i=1,2 ,3 ,4� to the
generator ĝ� â3�.

Let us write the above basis vectors sequentially, as it is
done in Table II. The 12�12 matrix, determined by this
table, is precisely the matrix S that splits the linearized dy-

namical equations �̈=J�t� ·� for the considered case. In Table
II, we denote the basis vectors � j��i� by the symbol of the
irrep �i �i=1,2 ,3 ,4� and the number j=1,2 ,3 of the basis
vector of this irrep. The normalization factor � 1

2
� must be

associated with each row of this table to produce the normal-
ized basis vectors �because of this fact, we mark the rows as
2� j��i� in the last column of Table II�.

Obviously, we can use the matrix S from Table II �the
rows of this matrix are the basis vectors of all the irreps of

the group T4� not only for the action on the vectors in the X
space of the full nonlinear system, but on the vectors in the �

space of the linearized system �̈=J�t� ·�, as well. It is essen-
tial that in the latter case the matrix S reduce the Jacobi
matrix J�t� to a certain block-diagonal form. Indeed, as was
shown in theorem 1, the matrix J�t� commutes with all the
matrices of the mechanical representation of the bush sym-
metry group. Therefore, according to the Wigner theorem, it
can be reduced, using unitary transformation by the matrix S,
to the block-diagonal form with blocks whose dimension is
equal to nj ·mj. Here nj is the dimension of the irrep � j, while
mj is the number of times that this irrep enters into the de-
composition of the mechanical representation �constructed,
in our case, in the � space�.

D. Proof of theorem 2

In Sec. IV B, we have shown that for the translational
group T= �âm� all nj =1 and all mj =m. Therefore, the matrix
S, constructed according to the prescription of Sec. IV C,
decomposes the Jacobi matrix J�t� into blocks whose dimen-
sion is equal to m. As a consequence of this decomposition,

the system �̈=J�t� ·� splits into k=N /m independent sub-
systems Lj �j=1,2 , . . . ,k�, each consisting of m differential
equations of the second order. The coefficients of these equa-
tions are time-dependent functions, and this time dependence
is determined by the functions A�t�, B�t�, C�t�, etc., entering
into the bush displacement pattern �see, for example, Eqs. �7�
and �8��. For the one-dimensional bushes, the coefficients of
the above subsystems Lj turn out to be periodic functions
with identical period, while for the many-dimensional bushes
they possess different periods �such bushes describe quasip-
eriodic motion�.

In general, it is impossible to obtain the explicit form of
the functions A�t�, B�t�, C�t�, etc., determining the bush dis-
placement pattern. Therefore, we can add the bush dynamical

TABLE I. Irreducible representations of the cyclic group T4.

ê ĝ ĝ2 ĝ3

�1 1 1 1 1

�2 1 i −1 −i

�3 1 −1 1 −1

�4 1 −i −1 i

TABLE II. Basis vectors of the irreducible representations of the
cyclic group T4.

�1 �2 �3 �4 �5 �6 �7 �8 �9 �10 �11 �12

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

1 0 0 1 0 0 1 0 0 1 0 0 2�1��1�
0 1 0 0 1 0 0 1 0 0 1 0 2�2��1�
0 0 1 0 0 1 0 0 1 0 0 1 2�3��1�

1 0 0 −i 0 0 −1 0 0 i 0 0 2�1��2�
0 1 0 0 −i 0 0 −1 0 0 i 0 2�2��2�
0 0 1 0 0 −i 0 0 −1 0 0 i 2�3��2�

1 0 0 −1 0 0 1 0 0 −1 0 0 2�1��3�
0 1 0 0 −1 0 0 1 0 0 −1 0 2�2��3�
0 0 1 0 0 −1 0 0 1 0 0 −1 2�3��3�

1 0 0 i 0 0 −1 0 0 −i 0 0 2�1��4�
0 1 0 0 i 0 0 −1 0 0 −i 0 2�2��4�
0 0 1 0 0 i 0 0 −1 0 0 −i 2�3��4�
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equations to the m differential equations of each subsystems
Lj. These additional d equations determine the functions
A�t�, B�t�, C�t�, etc., implicitly, where d is the dimension of
the considered bush B�âm , . . . �.

On the other hand, we can give the following estimate for
the bush dimension d:

d � m . �64�

Here m is the index of the translational symmetry of the
bush B�âm , . . . � �it determines the ratio between the size
of the primitive cell in the vibrational state and in the
equilibrium�. Indeed, the bush displacement pattern can be

found as the solution to the equation ĜX=X. If we take into
account only translational symmetry group of the bush
B�âm , . . . �—i.e., G= �âm�—this equation reduces to the equa-
tion ĝ�=� �ĝ= âm� for the basis vector � of the identity irrep
��=1 in Eq. �61�� of the group T= �âm�. As it has been al-
ready shown in Sec. IV B, such a vector � depends on ex-
actly m arbitrary parameters. But some additional symmetry
elements, denoted by the ellipsis in the bush symbol
B�âm , . . . �, can lead to a decrease in the number m of the
above parameters.9 As a consequence, for all cases, d�m,
and we can state that m equations of each Lj, extended by d
additional equations of the given bush, provide us with

k=N /m independent subsystems L̃j of m+d autonomous dif-
ferential equations. Thus, the linear stability analysis of the
bush B�âm , . . . � in the N-particle chain indeed reduces to
studying the stability of individual subsystems whose dimen-
sion does not exceed m+d. We have arrived at the conclu-
sion of theorem 2 and its corollary. The proof is completed.

The authors of Ref. �22�, studying the synchronization of
the chaotic oscillators in chains with shift-invariant symme-
try and using for this purpose the discrete Fourier transfor-
mation method, arrived at a conclusion equivalent to the
statement of our theorem 2. We would like to note that this
theorem is only a part of the general group-theoretical ap-
proach developed in the present paper. In the framework of
this approach, we can easily take into account any additional
symmetries of a considered dynamical system. In particular,
below we study the stability problem for chains with inver-
sion and/or with even potential �see also �8,9�� and for the
molecule with octahedral symmetry. Moreover, the authors
of �22� discussed only the stability of the synchronization
manifold which corresponds, in our terminology, to the
trivial bush �A�t�, A�t� , . . . ,A�t��, while our approach has
been used, in particular, for all possible one-dimensional
bushes in the FPU chains �9�.

E. Example 1: Splitting the linearized system for the bush
B†â3

‡

We consider the splitting of the linearized system

�̈=J�t� ·� for the bush B�â3� in a chain with N=12 particles.
The original nonlinear system, for this case, reads

ẍi = f�xi+1 − xi� − f�xi − xi−1� ,

i = 1,2, . . . ,12 �x0 = x12, x13 = x1� . �65�

The displacement pattern of the bush B�â3�, obtained from
the equation â3 X=X, reads

X = �x�t�,y�t�,z�t��x�t�,y�t�,z�t��x�t�,y�t�,z�t��x�t�,y�t�,z�t�� .

�66�

Substituting this form of vibrational pattern into �65�, we
obtain three differential equations for the functions x�t�, y�t�,
and z�t� �all the other equations of �65� turn out to be equiva-
lent to these equations�:

ẍ = f�y − x� − f�x − z� ,

ÿ = f�z − y� − f�y − x� ,

z̈ = f�x − z� − f�z − y� . �67�

The linearization of Eqs. �65� near the dynamical regime
determined by Eq. �66� leads to the system

�̈ = J�t� · � , �68�

with the following Jacobi matrix:

J�t� =	
� A 0 0 0 0 0 0 0 0 0 B

A � C 0 0 0 0 0 0 0 0 0

0 C � B 0 0 0 0 0 0 0 0

0 0 B � A 0 0 0 0 0 0 0

0 0 0 A � C 0 0 0 0 0 0

0 0 0 0 C � B 0 0 0 0 0

0 0 0 0 0 B � A 0 0 0 0

0 0 0 0 0 0 A � C 0 0 0

0 0 0 0 0 0 0 C � B 0 0

0 0 0 0 0 0 0 0 B � A 0

0 0 0 0 0 0 0 0 0 A � C

B 0 0 0 0 0 0 0 0 0 C �


 ,

�69�

where

A�t� = f��y�t� − x�t�� ,

B�t� = f��x�t� − z�t�� ,

C�t� = f��z�t� − y�t�� ,

��t� = − �A�t� + B�t�� ,

��t� = − �A�t� + C�t�� ,

��t� = − �B�t� + C�t�� . �70�

Using Table II, the matrix S that splits up the system �68�
can be written as follows:

9Moreover, these additional symmetry elements lead not only to
reducing the bush dimension, but to a further splitting of the above
discussed subsystems Lj.
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S =
1

2	
I I I I

I − iI − I iI

I − I I − I

I iI − I − iI

 , �71�

where I is the 3�3 identity matrix.
With the aid of the unitary transformation

Jnew�t� = S† · J�t� · S, �72�

we obtain

Jnew�t� =	
D1 0 0 0

0 D2 0 0

0 0 D3 0

0 0 0 D4


 , �73�

where

Dk = 	− �A + B� A �kB

A − �A + C� C

�̄kB C − �B + C�

 �k = 1,2,3,4� ,

�74�

with �1=1, �2= i, �3=−1, and �4=−i ��̄k is the complex
conjugate value of �k�.

This means that the linear transformation

� = S · �new �75�

reduces the old equations �68� to the following form:

�̈new = Jnew�t� · �new, �76�

with the block-diagonal matrix Jnew�t�=S†·J�t� ·S determined
by Eqs. �73� and �74�.

Assuming

�new = ��1
�1�,�2

�1�,�3
�1���1

�2�,�2
�2�,�3

�2���1
�3�,�2

�3�,�3
�3���1

�4�,�2
�4�,�3

�4�� ,

we can present Eq. �76� in a more explicit form

�̈1
�k� = − �A + B��1

�k� + A�2
�k� + �kB�3

�k�,

�̈2
�k� = A�1

�k� − �A + C��2
�k� + C�3

�k�,

�̈3
�k� = �̄kB�1

�k� + C�2
�k� − �B + C��3

�k�, �77�

where �k=1, i ,−1 ,−i for k=1,2 ,3 ,4, respectively.
Thus, we obtain four independent 3�3 systems of linear

differential equations with time-dependent coefficients A�t�,
B�t�, and C�t�, which are determined by Eqs. �70�.

Let us write down these equations for the FPU-� chain.
For this case, the function f�x� in Eq. �65� reads f�x�=x+x2.
Therefore, f��x�=1+2x, and we obtain, from Eqs. �70�,

A�t� = 1 + 2�y�t� − x�t�� ,

B�t� = 1 + 2�x�t� − z�t�� ,

C�t� = 1 + 2�z�t� − y�t�� .

Substituting these functions into Eqs. �77� one can finally
obtain the following equations for the FPU-� chain:

�̈�k� = Jk�t� · ��k�,

where

Jk�t� = 	 − 2�1 + y − z� 1 + 2�y − x� �k�1 + 2�x − z��
1 + 2�y − x� − 2�1 + z − x� 1 + 2�z − y�

�̄k�1 + 2�x − z�� 1 + 2�z − y� − 2�1 + x − y�



�k = 1,2,3,4� . �78�

Here �1=1, �2= i, �3=−1, and �4=−i and x�x�t�, y�y�t�,
and z�z�t� are functions determined by the dynamical equa-
tions of the bush B�â3�:

ẍ = �y − 2x + z��1 + y − z� ,

ÿ = �z − 2y + x��1 + z − x� ,

z̈ = �x − 2z + y��1 + x − y� . �79�

These equations can be obtained from Eqs. �67� taking into
account the relation f�x�=x+x2 for the case of the FPU-�
model.

Remark. According to Eqs. �66� and �67� �see also Eqs.
�79��, the vibrational bush B�â3� is three dimensional. How-
ever, it actually turns out to be a two-dimensional bush. In-
deed, there is no on-site potential in the FPU-� chains and,
therefore, the conservation law of the total momentum of
such system holds. Assuming that the center of mass is fixed,
we obtain an additional relation x�t�+y�t�+z�t�=0 which re-
duces the dimension of the bush B�â3� from 3 to 2.

F. Further decomposition of linearized systems
based on higher-symmetry groups

Up to this point, we have discussed the decomposition of

the linearized system �̈=J�t� ·� using only the translational
part of the bush symmetry group. In general, one can arrive
at a more detailed splitting, if one takes into account the
additional bush symmetries.

1. Example 2: Splitting of the linearized system

for the bush B†â3 , î‡

Let us consider the decomposition of the linearized sys-

tem for the bush B�â3 , î� in the case of an arbitrary mono-
atomic chain. Since the translational part of the symmetry

group G= �â3 , î�, which turns out to be the dihedral group, is
the same as that of the early considered bush B�â3�, we can
take advantage of all the results obtained in Sec. IV E and
add only some restrictions originating from the presence of

the additional generator î of the group �â3 , î�.
Substituting the vector X�t� in the form �66� into the equa-

tion îX�t�=X�t�, we obtain z�t��−x�t�, y�t��−y�t� and,
therefore, y�t��0. The displacement pattern for the bush

B�â3 , î� then can be written as follows:
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X�t� = �x�t�,0,− x�t��x�t�,0,− x�t��x�t�,0,− x�t��x�t�,0,− x�t�� .

�80�

Thus, the bush B�â3 , î� turns out to be one dimensional.
As a result of the substitution z�t��−x�t�, y�t��0, the

three equations �67� reduce to only one equation

ẍ = f�− x� − f�2x� . �81�

For the FPU-� chain �see Eqs. �79��, this equation transforms
to

ẍ + 3x + 3x2 = 0. �82�

Unlike the purely translational group �â3�, of the three-

dimensional bush B�â3�, the symmetry group �â3 , î� of the

one-dimensional bush B�â3 , î� is the dihedral group with an-
other set of the irreps and basis vectors. It can be shown �see

the next section� that taking into account that �â3 , î� is the
supergroup with respect to group �â3� allows one to obtain
the following splitting scheme of the linearized system

�̈=J�t� ·�:

1:��1�; 1:��6�; 2:��2,�3�;

2:��4,�5�; 3:��7,�9,�11�; 3:��8,�10,�12� . �83�

Here we present the dimension of each independent sub-
system �before the colon� and the list of its variables �after
the colon�. From the scheme �83�, one can see that two of
four three-dimensional subsystems corresponding to the
splitting provided by group �â3� �see Eqs. �77��, in the case

of the supergroup �â3 , î�, are decomposed into new indepen-
dent subsystems of dimensions equal to 1 and 2. In concise
notation, the splitting scheme �83� can be written as follows:

2�1�, 2�2�, 2�3� . �84�

Each term of this sequence is of the form bj�dj� where bj is
the number of independent subsystems whose dimension is
equal to dj.

2. Irreducible representations and their basis
vectors for the dihedral group

Hereafter, for simplicity, we will discuss only chains with
an even number �N� of particles and illustrate the main ideas
with the example N=12.

The symmetry of an N-particle �monoatomic� chain is
completely described by the dihedral group G0=DN which
can be written as the union of two cosets with respect to its
translational subgroup TN= �ê , â , â2 , . . . , âN−1�:

DN = TN � TN · î . �85�

Here î is the inversion relative to the center of the chain. The
group DN is a non-Abelian group, since some of its elements

do not commute with each other �for example, îâ= â−1î�. As
a consequence, the number of classes of conjugate elements
of this group is less than the total number �2N� of its ele-
ments and some irreps � j are not one dimensional. The irreps

of the dihedral group DN can be obtained by the well-known
induction procedure from those of its subgroup TN. It turns
out that for DN with even N there are four one-dimensional
irreps, while all the other �N /2−1� irreps are two dimen-
sional. We discussed the construction of these irreps in �8�,
where the following results were obtained.

Every irrep can be determined by two matrices M j�â� and

M j�î� corresponding to its generators â and î, where j is the
number of this irrep. Four one-dimensional irreps
�j=1,2 ,3 ,4� are real and are determined by the matrices10

M j�â� = ± 1, M j�î� = ± 1. �86�

All other irreps are two dimensional and are determined by
the matrices

M j�â� = �
 j 0

0 
̄ j
�, M j�î� = �0 1

1 0
� ,

with 
 j =e2�ij/N and 
̄ j =e−2�ij/N �j�0, N /2�.11

Let us find the basis vectors of the irreducible representa-

tions of the dihedral group �âm , î� for the case m=3 which

corresponds to the bush B�â3 , î�. Let � and � be the basis
vectors of the two-dimensional invariant subspace corre-
sponding to the irrep with the matrix

M�ĝ� = �� 0

0 �̄
� ,

where ĝ= âm is the translational generator
of the dihedral group. They can be obtained
from the equations ĝ�=�� and ĝ�= �̄�, respectively.
For example, using Eq. �63� for the case m=3,
we find �= �x ,y ,z ��−1x ,�−1y ,�−1z ��−2x ,�−2y ,�−2z � . . . �
and �= �x̃ , ỹ , z̃ � �̄−1x̃ , �̄−1ỹ , �̄−1z̃ � �̄−2x̃ , �̄−2ỹ , �̄−2z̃ � . . . �.
Here �x ,y ,z� and �x̃ , ỹ , z̃� are arbitrary constants which these
vectors depend on.

Taking into account the presence of the matrix

M�î� = �0 1

1 0
�

in every two-dimensional irrep, one can state that

î� = �, î� = � . �87�

Because of these relations, there appear certain connections
between the arbitrary constants �x ,y ,z� and �x̃ , ỹ , z̃�. As a
consequence, the basis vectors � and �, for each two-

dimensional irrep of the group �â3 , î�, depend on only three
arbitrary parameters x, y, and z. In turn, this means that each
two-dimensional irrep enters exactly 3 times into the decom-
position of the mechanical representation of the dihedral

group �â3 , î�.

10All combinations of signs are allowed in Eqs. �86�.
11For the values j=0 and j=N /2, two-dimensional representations

turn out to be reducible and they decompose into two pairs of one-
dimensional irreps listed in Eqs. �86�.
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Unlike this, the one-dimensional irreps of the dihedral

group �â3 , î� are contained in the mechanical representation
less than 3 times. Indeed, let us consider the basis vectors �
and � of the one-dimensional irreps of the group �â3� deter-
mined by the matrices M�a3�=1 and M�a3�=−1, respec-
tively, for the case m=3, N=12:

� = �x,y,z�x,y,z�x,y,z�x,y,z� ,

� = �x,y,z�− x,− y,− z�x,y,z�− x,− y,− z� .

These vectors can be obtained from Eq. �63� by letting
�=1 and �=−1. If the vector � is not only the basis vector of
the irrep of the group �â3�, but also is the basis vector of a

certain one-dimensional irrep of the dihedral group �â3 , î�, it

must satisfy the equations î�=�, for the irrep �1 �M�î�=1�
and î�=−�, for the irrep �2 �M�î�=−1�. We obtain z=−x,
y=0 from the former equation and z=x from the latter equa-
tion. Thus

���1� = �x,0,− x�x,0,− x�x,0,− x�x,0,− x� ,

���2� = �x,y,x�x,y,x�x,y,x�x,y,x� .

In the same manner, we obtain the basis vectors ���3� and

���4� from the equations î�=� and î�=−�, respectively:

���3� = �x,y,x�− x,− y,− x�x,y,x�− x,− y,− x� ,

���4� = �x,0,− x�− x,0,x�x,0,− x�− x,0,x� .

From the above results, we conclude that the irreps �1 and �4
are contained once, while the irreps �2 and �3 are contained
twice in the decomposition of the mechanical representation
for the considered chain.

The generalization of these results to the case of the di-

hedral group �âm , î� with arbitrary m is trivial.

The splitting scheme �83� for the bush B�â3 , î� for the
monoatomic chain with N=12 particles can be now ex-
plained as follows. There are five irreps ��1 ,�2 ,�3 ,�4 ,�5�
of the group �â3 , î���ê , â3 , â6 , â9 � î , îâ3 , îâ6 , îâ9��D4. As we
have just shown, the one-dimensional irreps �1 �n1=1� and
�4 �n4=1� are contained once �m1=1, m4=1� in the decom-
position of the mechanical representation � for our chain. On
the other hand, the one-dimensional irreps �2 �n2=1� and �3

�n3=1� are contained twice �m2=2, m3=2� in �, while the
two-dimensional irrep �5 �n5=2� is contained thrice
�m5=3� in �. The 12 variables � j from Eq. �83� are associ-
ated with the irreps of the group D4 in the following manner:

�1 → �1�1�, �2 → �2�1�, �3 → �2�2� ,

�4 → �3�1�, �5 → �3�2�, �6 → �4�1� ,

��7,�8� → �5�1�, ��9,�10� → �5�2�, ��11,�12� → �5�3� .

�88�

Here, in parentheses, we give the index of the copy of the
irrep �i �whose dimension is equal to ni� in the decomposi-

tion of the mechanical representation �. Note that the total
number of such copies determines how many times mi the
irrep �i is contained in �. On the other hand, as we already
know, mi shows us the dimension of the subsystems Lj, while
ni determines the total number of Lj with the same dimension
associated with �i. As a result, we obtain the splitting
scheme �83�.

The above-discussed decomposition of the full linearized

system �̈=J�t� ·� into independent subsystems Lj of small
dimensions permits one to analyze efficiently the stability of
a given bush in the monoatomic chain with an arbitrarily
large number of particles �N�.

Using this idea, the stability diagrams for all the one-
dimensional bushes in both FPU-� and FPU-� chains were
obtained in �9�. As an example, in Fig. 1, we reproduce the

stability diagram for the bush B�â3 , î� for the FPU-� chain
from that paper. In this diagram, each point �A ,q� determines
a certain value of the bush mode amplitude A and a certain
value of the wave number q=2�j /N that is associated with
the index j of a fixed mode. The black points �A ,q� corre-
spond to the case where the mode j=qN /2� becomes ex-
cited because of its parametric interaction with the mode of

the bush B�â3 , î�. The white color denotes the opposite case:
the corresponding mode j, being zero at the initial instant,
continues to be zero in spite of its interaction with the con-
sidered bush. Such a diagram allows one to study stability of
one-dimensional bushes not only for finite N, but also for the
case N→� �some more details can be found in �9��.

V. SOME ADDITIONAL EXAMPLES

A. Stability of the two-dimensional bush B†â4 , î‡
in the FPU-� chain

Let us consider the stability of the two-dimensional bush

B�â4 , î� for the case N=12. It can be determined by the dis-
placement pattern �9�

X�t� = �A�t�,B�t�,− B�t�,− A�t��A�t�,B�t�,− B�t�,

− A�t��A�t�,B�t�,− B�t�,− A�t�� . �89�

The symmetry group of this bush is the dihedral group D3
with the translational subgroup

T3 = �ê, â4, â8� �â12 = ê� . �90�

Using the techniques developed in the previous sections,
one can obtain the following results on the decomposition of

FIG. 1. Regions of stability �white color� of different modes of
the FPU-� chain, interacting parametrically with the one-
dimensional bush B�a3 , i�.
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the linearized system �̈=J�t� ·� �for computational details see

�24��. The linearized system �̈=J�t� ·� for studying the sta-

bility of the bush B�â4 , î�, in the case N=12, splits into two
2�2 and two 4�4 independent systems Lj �j=1,2 ,3 ,4� of
differential equations of the second order. These systems can
be written in the form �̈ j =M j�t� ·� j. Here � j are two-
dimensional or four-dimensional vectors and M j�t� are 2
�2 or 4�4 matrices. The explicit forms of these matrices
for systems Lj �j=1,2 ,3 ,4� are

M1�t� = �− K3�t� K1�t�
K1�t� − K4�t�

�, M2�t� = �− K1�t� K1�t�
K1�t� − K1�t�

� ,

M3�t� = M4�t� =	
− K6�t� K1�t� K2�t� 0

K1�t� − K3�t� 0 0

K2�t� 0 − K5�t� K1�t�
0 0 K1�t� − K1�t�


 ,

�91�

where

K1�t� = 1 − 2A�t� + 2B�t�, K2�t� = �3�1

2
− 2B�t�� ,

K3�t� = 3 + 6A�t� + 2B�t�, K4�t� = 3 − 2A�t� − 6B�t� ,

K5�t� =
5

2
− 2A�t� − 4B�t�, K6�t� =

3

2
− 2A�t� .

In conclusion, in Fig. 2 we reproduce the stability dia-

gram for the two-dimensional bush B�â4 , î� from our paper
�9�. This diagram corresponds to the FPU-� chain with
N=12 particles. It represents a planar section of the four-
dimensional stability domain in the space of the initial con-
ditions �1�0�, �2�0�, �̇1�0�, and �̇2�0�, where �1�t� and �2�t�
are two modes of the considered bush. In producing this
figure, we specify �̇1�0�=0 and �̇2�0�=0 and change �1�0�

and �2�0� in some interval near their zero values. The stabil-
ity domain, resembling a beetle, is drown in black color in

the plane �1�0�-�2�0�. The bush B�â4 , î� loses its stability
�and transforms into another bush of higher dimension� when
we cross the boundary of the black region in any direction.
From Fig. 2 it is obvious how nontrivial the stability domain
for a bush of modes can be.

A detailed description of the stability domains for one-
dimensional and two-dimensional bushes of modes in both
FPU-� and FPU-� chains can be found in �9�.

B. Stability of bushes of modes for the octahedral molecule

As was already discussed, the group-theoretical method
developed in the present paper can be applied not only to the
monoatomic chains, but to any dynamical systems with dis-
crete symmetry. Below, we demonstrate this idea using a
mechanical system with the point symmetry group Oh as one
possible example. Let us consider the model of an octahedral
molecule depicted in Fig. 3. It is formed by six equal atoms
situated at the vertices of a regular octahedron whose edges
we denote by a. The origin of coordinates is chosen as the
center of the octahedron. Four atoms �2,3,4,5� in the plane
XY form a square, while two other atoms �1,6� are situated
on the Z axis.

In �7�, we have considered nonlinear vibrations of the
above molecule structure supposing that interatomic interac-
tions are described by the Lennard-Jones potential. All pos-
sible bushes of modes and a certain stability analysis of these
dynamical objects, based on the direct numeric calculations,
have been presented in that paper. We can simplify this sta-
bility analysis and, at the same time, deepen our insights into
the bush stability problem using the above-discussed group-
theoretical approach.

Let us split the full linearized system �̈=J�t� ·� for the
octahedral structure �Fig. 3� in the vicinity of the three
bushes: one-, two-, and three-dimensional bushes B1�Oh�,
B2�D4h�, and B3�C4v� with point symmetry groups Oh, D4h,
and C4v, respectively.

Note that simple geometric forms of the vibrational states
of the considered molecule correspond to these bushes �7�.
The bush B1�Oh� describes evolution of the regular octahe-
dron whose edge length a=a�t� changes periodically in time.
In the vibrational state corresponding to the bush B2�D4h�

FIG. 2. Stability diagram for the bush B�a4 , i� in the FPU-�
chain with N=12 particles.

FIG. 3. Octahedral structure with the symmetry group Oh.
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the atoms situated in the XY plane, as before, form a square
for any time t, while the distances �heights� h1=h1�t�, h2

=h2�t� of the top and bottom atoms �see Fig. 3� from this
plane, being equal to each other �h1�t�=h2�t��, become dif-
ferent from those in the regular octahedron. The form of the
vibrational state for the bush B3�C4v� differs from that for
the bush B2�D4h� by inequality �h1�t��h2�t�� of the two
heights.

The dynamics of the considered octahedral structure is
characterized by 18 degrees of freedom, but only 12 of them
correspond to vibrations �one can eliminate 6 degrees of
freedom associated with the translation and rotation of the
molecule as a whole unit�.

Thus, we have a nonlinear system of 12 differential equa-
tions describing vibrations of our mechanical structure. The

dimension of the linearized system �̈=J�t� ·� near any spe-
cific vibrational regime is also equal to 12, but we can split it
into a number of independent subsystems. Using a group-
theoretical approach, we have obtained the following split-
ting schemes �details of the calculation can be found in �24��:

For B1�Oh�: 12�1�;

For B2�D4h�: 6�1�, 3�2�;

For B3�C4v�: 1�1�, 1�2�, 3�3� . �92�

Let us comment on these splitting schemes. The linearized

system �̈=J�t� ·� for the bush B1�Oh� can be decomposed
into 12 independent equations

�̈ j = Kj�t�� j �j = 1, . . . ,12� , �93�

where Kj�t� are functions depending on the time-periodic
solution a�t� to the dynamical equation of the considered
one-dimensional bush �see �7��:

ä = − 4u��a� − �2u���2a� . �94�

Here u�r� is the potential of the center two-particle interac-
tion �for example, it can be the Lennard-Jones potential
u�r�=A /r12−B /r6�, while u��r� is the derivative of this po-
tential.

The linearized system �̈=J�t� ·� for the bush B2�D4h� can
be decomposed into six independent equations of the form
�93� and three two-dimensional subsystems

�̈ j = K j�t�� j �j = 1,2,3� , �95�

where � j are two-dimensional vector variables, while K j�t�
are 2�2 matrices. All the coefficients of these matrices, as
well as scalar coefficients Kj�t� from the one-dimensional
equations of the form �93�, are quasiperiodic functions de-
pending on the two variables a�t� and h�t�, which represent
the solution to the dynamical equations of the bush B2�D4h�:

ä = − 2u��a� − �2u���2a� − 2u��b�
a

b
,

ḧ = − 4u��b�
h

b
− u��2h� . �96�

�For the definition of the function b�t� see below�.
The linearized system �̈=J�t� ·� for the bush B3�C4v� can

be decomposed into one individual equation of the form
�93�, one two-dimensional subsystem of the form �95�, and
three three-dimensional subsystems which we also can write
as Eq. �95� assuming that � j and K j�t� are, in this case, three-
dimensional vectors and 3�3 matrices, respectively. All the
elements of matrices K j�t� depend on the three functions
a�t�, h1�t�, and h2�t�, describing the dynamics of the bush
B3�C4v�. These functions represent the solution to the fol-
lowing equations of the considered bush �7�:

ä = − 2u��a� − �2u���2a� − u��b�
a

b
− u��c�

a

c
,

ḧ1 = − u��b�
5h1 − h2

b
− u��h1 + h2� ,

ḧ2 = − u��c�
5h2 − h1

c
− u��h1 + h2� . �97�

Here

b =�a2

2
+ �5

4
h1 −

1

4
h2�2

, c =�a2

2
+ �5

4
h2 −

1

4
h1�2

�note that for the bush B2�D4h� h1=h2=h�.
The explicit form of the coefficients of Eqs. �93� and �95�

can be found in �24�.

VI. CONCLUSION

All the exact dynamical regimes in N-particle mechanical
systems with discrete symmetry can be classified by the sub-
groups Gj of the parent group G0—i.e., the symmetry group
of its equations of motion. Actually, each subgroup Gj
singles out a certain invariant manifold which, being decom-
posed into the basis vectors of the irreducible representations
of the group G0, is termed a “bush of modes”�1–3�.

The bush B�Gj�, representing an n-dimensional vibra-
tional regime, can be considered as a dynamical object char-
acterized by its displacement pattern of all the particles from
their equilibrium positions, by the appropriate dynamical
equations and the domain of the stability. One-dimensional
bushes are symmetry-determined similar nonlinear normal
modes introduced by Rosenberg �16� �see also �4��. For
Hamiltonian systems, the energy of the initial excitation
turns out to be “trapped” in the bush and this is a phenom-
enon of energy localization in modal space.

The different aspects of the bush theory were developed
in �1–7�. Bushes of vibrational modes �invariant manifolds�
in the FPU chains were discussed in �8–12�.

The stability analysis of a given bush B�G� reduces to
studying the linearized �in the vicinity of the bush� dynami-

cal equations �̈=J�t� ·�. In the present paper, we prove �theo-
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rem 1� that the symmetry group of the linearized system
�̈=J�t� ·� turns out to be precisely the symmetry group G of
the considered bush B�G�. This result allows one to apply the
well-known Wigner theorem about the specific structure of
the matrix �J�t�, in our case� commuting with all the matrices
of a fixed representation �mechanical representation, in our
case� of a given group. According to the above theorem one
can split effectively the linearized system �̈=J�t� ·� into a
number of independent subsystems of differential equations
with time-dependent coefficients.

We want to emphasize that this symmetry-related method
for splitting the linearized systems arising in the linear sta-
bility analysis of the dynamical regimes is suitable for arbi-
trary nonlinear mechanical systems with discrete symmetry.
Such a decomposition �splitting� of the linearized system

�̈=J�t� ·� is especially important for the multidimensional
bushes of modes, describing quasiperiodic vibrational re-
gimes, which cannot be treated with the aid of the Floquet
method. Indeed, in this case, we need to integrate the differ-
ential equations with time-dependent coefficients over a
large time interval, unlike the case of periodic regimes where
we can solve the appropriate differential equations over only
one period to construct the monodromy matrix.

The above method is applied for studying the stability of
some dynamical regimes �bushes of modes� in the mono-
atomic chains. For this specific mechanical systems, we
prove theorem 2 which allows one to find very simply the
upper bound of dimensions of the independent subsystems

obtained after splitting the linearized system �̈=J�t� ·�. In-
deed, according to this theorem, the dimension of each such

subsystem does not exceed the integer m determining the
ratio of the volumes of the primitive cell of the chain in
the vibrational state, corresponding to the given bush
B�G�=B�âm , . . . �, and the equilibrium state. Taking into ac-
count any other symmetry elements of the considered bush
allows one to reduce the dimensions of at least some of the
above-discussed subsystems.

In conclusion, let us mention a particular research field
where the group-theoretical approach developed in the
present paper would be relevant. For an investigation of the
integrability of the Hamiltonian systems with a large number
of degrees of freedom, one may study the integrability of the
reduced Hamiltonian system on low-dimensional invariant
manifolds �see �23� and references therein�. In particular, it is
important to single out one-dimensional manifolds and split
the linearized Hamiltonian systems in the vicinity of such
manifolds. Evidently, the group-theoretical methods can be
useful for studying these problems for the dynamical systems
with discrete symmetries. For example, the invariant mani-

fold corresponding to the two-dimensional bush B�â4 , î� has
been already used for such a purpose and the nonintegrability
of nonlinear lattices with generic polynomial interaction and
on-site potentials has been proved in the paper by Yoshimura
and Umeno �23�.
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